

9

ROBOT IN THE
MAZE

2

MAZE

ABSTRACT

The aim of activity is solve the maze.

In first version the mazes is made from black line. Robot use two sensor of line

The second option is to build the maze with walls. For its resolution the robot uses an ultrasonic sensor to

follow the wall and a line-follower sensor to detect the front walls.

DIDACTIC OBJECTIVES

 To learn how to develop an algorithm for solving the maze.

 To learn the operation of different sensors and components.

 To develop computational thinking.

STEM Subject: Science☒ Technology ☐ Engineering☐ Mathematics☒

Education Level: 12-14 years☐ 14-16 years☒

PROBLEM STATEMENT

The mBot has to find itself the way out of a maze, by:

1. Using two line sensors in the maze made from the black line

2. Using both the ultrasonic sensor and the line-follower sensor to compare distances to the wall.

3

BOM (Bill of Materials Needed)

 mBot => Ref. 90054

 (x2) Line Follower sensors:

 Me Ultrasonic Sensor:

4

 Different beams and structures:

 Maze with black line.

First version

Second version

5

ACTIVITY DESCRIPTION

First version

Robot is eqipped in two line sensors. Sensor nr 1 should be following the black line and realising the classical

algorithm „go along the line”. Sensor nr 2 checks what colour is located on the robots right.

The basic algorithm of moving around the maze is an algorithm of „keeping to the right”.

It can be defined as follows:

6

The readings from line sensor are:

two white colors 3

two black colors 0

left black, right white 1

left white, right black 2

Now we can create the conditions to control the movement of robot. Lets see the picture one again:

We will create two varaibles: line_detect and right_side

Robot goes straight
when the sensor nr 1
is black, and sensor nr

2 is white.

But sensor 1 can
detect that robot

loses the line. That
time we have to

correct the path like
in line follower

program.

If line_detect=0 and right_side=3

Run forward

If line_detect=1 and right_side=3

Turn left

If line_detect=2 and right_side=3

Turn right

When the side sensor
nr 2 goes onto the

black line robot
should turn right.

If line_detect=0 and right_side=0

Turn right

This is perfect situation, but when you try to run this
program robot will not turn right fluently. During

the turning the right sensor changes readings to 1 or
2. So we change:

If line_detect=0 and right_side≠3

Turn right

7

When both sensors
see the white colour it

means turning left
until it finds the black
colours by the sensor

nr 1.

In case when the line
is finished, robot will
turn around, and in
case when there is a
left turn, robot will

turn left.

If line_detect=3 and right_side=3

Turn left

All this cases we put to forever loop. Remember of nesting the if-else instruction.

8

Here you can see the maze made from the lines:

9

Second version

The robot will stay still until its board button is pressed and released. From this moment on the main program

will start running, combining the line-follower sensor and the ultrasonic sensor to detect the maze walls.

The first condition is stablished with the line-follower sensor, which is placed on the front of the mBot:

 If it detects white is because it is walking forward to the wall, so it will turn right 90 degrees.

 If it does not detect white, the second condition stablished with the ultrasonic sensor is started. This

sensor is placed in the right side of the mBot and will perform four different routines, depending on

the distance to the wall:

 Distance is smaller than 5 cm: the mBot is too close to the maze wall, so it will turn left slowly.

 Distance is between 5 and 6 cm: the mBot turns right slowly, correcting the slight path

diversion.

 Distance is between 6 and 8 cm: the mBot turns right a little faster, due to the diversion is

more noticeable.

 Distance is larger than 8 cm: it means the mBot has arrived to a wall corner, so it will tur right

very fast to find again the wall to follow.

The mBot will work autonomously, being the main code recorded on its Arduino board.

10

MAIN CODE (PC PROGRAM)

We will record this code into the Arduino board of the mBot. This way it will work independently from the

computer and there will not be needed a laptop close to the maze to complete the activity.

11

How to load a program into the Arduino mBot board using mBlock:

In order to load a program on the board using mBlock:

1. Choose mBot in the Board tab of the mBlock menu.

2. Connect the USB and choose "Serial Port" in the connect tab.

3. In the tab edit, choose "Arduino Mode" (In the program that we are going to load, instead of the green

flag, we will put the blue command "mBot program")

4. A window with the code will open to record it on the Arduino board of mBot. You can, if you want, modify

your program. Finally, click on Upload to Arduino.

5. If there have been no errors, a message will be sent informing that the program has been recorded

correctly. At this moment you will be able to start enjoying the program introduced in the robot, without

the computer turned on. For doing this, you must disconnect the USB cable and connect the batteries (or

lithium battery) of the robot. You will see that your mBot works independently.

Structural composition: once the programming is finished, we start BUILDING UP THE STRUCTURE where all

the mechanical elements will be set, just as the electronic elements.

12

13

FLOW CHART

First version

14

Second version

STUDENT’S EVALUATION

This exercise teaches algorithmic thinking. The right-hand algorithm can also be used for a robot with two

distance sensors - this case is difficult and is a good exercise for students to overcome obstacles. The

algorithm is clear, but it is technically necessary to choose the right time and distance.

15

SCALABILITY

The first ride is used to get to know the labyrinth (its construction). Next, the robot calculates the shortest

route to the destination and the next passage is performed without dead ends.

This program requires a program written in arduino.

